\(\int \frac {\tan ^3(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\) [522]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 118 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {(2 a-b) \text {arctanh}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{2 (a+b)^{5/2} f}+\frac {2 a-b}{2 (a+b)^2 f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sec ^2(e+f x)}{2 (a+b) f \sqrt {a+b \sin ^2(e+f x)}} \]

[Out]

-1/2*(2*a-b)*arctanh((a+b*sin(f*x+e)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(5/2)/f+1/2*(2*a-b)/(a+b)^2/f/(a+b*sin(f*x+e)
^2)^(1/2)+1/2*sec(f*x+e)^2/(a+b)/f/(a+b*sin(f*x+e)^2)^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3273, 79, 53, 65, 214} \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {(2 a-b) \text {arctanh}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{2 f (a+b)^{5/2}}+\frac {2 a-b}{2 f (a+b)^2 \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sec ^2(e+f x)}{2 f (a+b) \sqrt {a+b \sin ^2(e+f x)}} \]

[In]

Int[Tan[e + f*x]^3/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

-1/2*((2*a - b)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a + b]])/((a + b)^(5/2)*f) + (2*a - b)/(2*(a + b)^2*f*
Sqrt[a + b*Sin[e + f*x]^2]) + Sec[e + f*x]^2/(2*(a + b)*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3273

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[x^((m - 1)/2)*((a + b*ff*x)^p/(1 - ff*x)^((m
 + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x}{(1-x)^2 (a+b x)^{3/2}} \, dx,x,\sin ^2(e+f x)\right )}{2 f} \\ & = \frac {\sec ^2(e+f x)}{2 (a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(2 a-b) \text {Subst}\left (\int \frac {1}{(1-x) (a+b x)^{3/2}} \, dx,x,\sin ^2(e+f x)\right )}{4 (a+b) f} \\ & = \frac {2 a-b}{2 (a+b)^2 f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sec ^2(e+f x)}{2 (a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(2 a-b) \text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{4 (a+b)^2 f} \\ & = \frac {2 a-b}{2 (a+b)^2 f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sec ^2(e+f x)}{2 (a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(2 a-b) \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sin ^2(e+f x)}\right )}{2 b (a+b)^2 f} \\ & = -\frac {(2 a-b) \text {arctanh}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{2 (a+b)^{5/2} f}+\frac {2 a-b}{2 (a+b)^2 f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sec ^2(e+f x)}{2 (a+b) f \sqrt {a+b \sin ^2(e+f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.12 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.64 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {(2 a-b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \sin ^2(e+f x)}{a+b}\right )+(a+b) \sec ^2(e+f x)}{2 (a+b)^2 f \sqrt {a+b \sin ^2(e+f x)}} \]

[In]

Integrate[Tan[e + f*x]^3/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

((2*a - b)*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Sin[e + f*x]^2)/(a + b)] + (a + b)*Sec[e + f*x]^2)/(2*(a + b
)^2*f*Sqrt[a + b*Sin[e + f*x]^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2536\) vs. \(2(102)=204\).

Time = 4.02 (sec) , antiderivative size = 2537, normalized size of antiderivative = 21.50

method result size
default \(\text {Expression too large to display}\) \(2537\)

[In]

int(tan(f*x+e)^3/(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/(cos(f*x+e)^4*a^3*b^2+3*cos(f*x+e)^4*a^2*b^3+3*cos(f*x+e)^4*a*b^4+cos(f*x+e)^4*b^5-2*cos(f*x+e)^2*a^4*b-8*
cos(f*x+e)^2*a^3*b^2-12*cos(f*x+e)^2*a^2*b^3-8*cos(f*x+e)^2*a*b^4-2*b^5*cos(f*x+e)^2+a^5+5*a^4*b+10*a^3*b^2+10
*a^2*b^3+5*a*b^4+b^5)/(a+b)^(1/2)/cos(f*x+e)^2*(2*(-b*cos(f*x+e)^2+(a*b^2+b^3)/b^2)^(3/2)*(a+b)^(1/2)*b^2*cos(
f*x+e)^4-2*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^2*b^2*cos(f*x+e)^6-l
n(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a*b^3*cos(f*x+e)^6-2*ln(2/(sin(f*x
+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^2*b^2*cos(f*x+e)^6-ln(2/(sin(f*x+e)-1)*((a+b
)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a*b^3*cos(f*x+e)^6-4*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(3/2
)*a*b*cos(f*x+e)^2+2*(-b*cos(f*x+e)^2+(a*b^2+b^3)/b^2)^(1/2)*(a+b)^(1/2)*a^2*b*cos(f*x+e)^2+10*(-b*cos(f*x+e)^
2+(a*b^2+b^3)/b^2)^(1/2)*(a+b)^(1/2)*a*b^2*cos(f*x+e)^2+6*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)*a^2*b*cos(f*x
+e)^2-2*(-b*cos(f*x+e)^2+(a*b^2+b^3)/b^2)^(1/2)*(a+b)^(1/2)*a*b^2*cos(f*x+e)^6+4*(a+b)^(1/2)*(a+b-b*cos(f*x+e)
^2)^(1/2)*a*b^2*cos(f*x+e)^6+2*(-b*cos(f*x+e)^2+(a*b^2+b^3)/b^2)^(3/2)*(a+b)^(1/2)*a*b*cos(f*x+e)^4+4*(-b*cos(
f*x+e)^2+(a*b^2+b^3)/b^2)^(1/2)*(a+b)^(1/2)*a^2*b*cos(f*x+e)^4-8*(-b*cos(f*x+e)^2+(a*b^2+b^3)/b^2)^(1/2)*(a+b)
^(1/2)*a*b^2*cos(f*x+e)^4+2*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(3/2)*b^2*cos(f*x+e)^4-12*(-b*cos(f*x+e)^2+(a*b^2
+b^3)/b^2)^(1/2)*(a+b)^(1/2)*b^3*cos(f*x+e)^4+4*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)*b^3*cos(f*x+e)^4+2*(-b*
cos(f*x+e)^2+(a*b^2+b^3)/b^2)^(3/2)*(a+b)^(1/2)*a^2*cos(f*x+e)^2-2*(-b*cos(f*x+e)^2+(a*b^2+b^3)/b^2)^(3/2)*(a+
b)^(1/2)*b^2*cos(f*x+e)^2-4*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(3/2)*b^2*cos(f*x+e)^2-2*(-b*cos(f*x+e)^2+(a*b^2+
b^3)/b^2)^(1/2)*(a+b)^(1/2)*a^3*cos(f*x+e)^2+6*(-b*cos(f*x+e)^2+(a*b^2+b^3)/b^2)^(1/2)*(a+b)^(1/2)*b^3*cos(f*x
+e)^2+4*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)*a^3*cos(f*x+e)^2-2*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)*b^3*c
os(f*x+e)^2+4*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^3*b*cos(f*x+e)^4+
6*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^2*b^2*cos(f*x+e)^4+4*ln(2/(si
n(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^3*b*cos(f*x+e)^4+6*ln(2/(sin(f*x+e)-1)*
((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^2*b^2*cos(f*x+e)^4-5*ln(2/(1+sin(f*x+e))*((a+b)^(1/
2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^3*b*cos(f*x+e)^2-3*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*co
s(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^2*b^2*cos(f*x+e)^2+ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^
(1/2)-b*sin(f*x+e)+a))*a*b^3*cos(f*x+e)^2-5*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(
f*x+e)+a))*a^3*b*cos(f*x+e)^2-3*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a
^2*b^2*cos(f*x+e)^2+ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a*b^3*cos(f*x
+e)^2+4*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(3/2)*a*b+6*(-b*cos(f*x+e)^2+(a*b^2+b^3)/b^2)^(1/2)*(a+b)^(1/2)*b^3*c
os(f*x+e)^6-2*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)*b^3*cos(f*x+e)^6-8*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)
*a^2*b*cos(f*x+e)^4-4*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)*a*b^2*cos(f*x+e)^4+2*(a+b)^(1/2)*(a+b-b*cos(f*x+e
)^2)^(3/2)*b^2+2*(a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(3/2)*a^2+ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)
^2)^(1/2)-b*sin(f*x+e)+a))*b^4*cos(f*x+e)^6+ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(
f*x+e)+a))*b^4*cos(f*x+e)^6-2*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*b^4
*cos(f*x+e)^4-2*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*b^4*cos(f*x+e)^4-
2*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^4*cos(f*x+e)^2+ln(2/(1+sin(f*
x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*b^4*cos(f*x+e)^2-2*ln(2/(sin(f*x+e)-1)*((a+b)^(
1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^4*cos(f*x+e)^2+ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(
f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*b^4*cos(f*x+e)^2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 215 vs. \(2 (102) = 204\).

Time = 0.45 (sec) , antiderivative size = 445, normalized size of antiderivative = 3.77 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\left [-\frac {{\left ({\left (2 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{4} - {\left (2 \, a^{2} + a b - b^{2}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {a + b} \log \left (\frac {b \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {a + b} - 2 \, a - 2 \, b}{\cos \left (f x + e\right )^{2}}\right ) + 2 \, {\left ({\left (2 \, a^{2} + a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{4 \, {\left ({\left (a^{3} b + 3 \, a^{2} b^{2} + 3 \, a b^{3} + b^{4}\right )} f \cos \left (f x + e\right )^{4} - {\left (a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right )} f \cos \left (f x + e\right )^{2}\right )}}, \frac {{\left ({\left (2 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{4} - {\left (2 \, a^{2} + a b - b^{2}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {-a - b} \arctan \left (\frac {\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {-a - b}}{a + b}\right ) - {\left ({\left (2 \, a^{2} + a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{2 \, {\left ({\left (a^{3} b + 3 \, a^{2} b^{2} + 3 \, a b^{3} + b^{4}\right )} f \cos \left (f x + e\right )^{4} - {\left (a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right )} f \cos \left (f x + e\right )^{2}\right )}}\right ] \]

[In]

integrate(tan(f*x+e)^3/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*(((2*a*b - b^2)*cos(f*x + e)^4 - (2*a^2 + a*b - b^2)*cos(f*x + e)^2)*sqrt(a + b)*log((b*cos(f*x + e)^2 -
 2*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b) - 2*a - 2*b)/cos(f*x + e)^2) + 2*((2*a^2 + a*b - b^2)*cos(f*x +
 e)^2 + a^2 + 2*a*b + b^2)*sqrt(-b*cos(f*x + e)^2 + a + b))/((a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*f*cos(f*x + e
)^4 - (a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*f*cos(f*x + e)^2), 1/2*(((2*a*b - b^2)*cos(f*x + e)^4 - (2*a
^2 + a*b - b^2)*cos(f*x + e)^2)*sqrt(-a - b)*arctan(sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(a + b)) - ((
2*a^2 + a*b - b^2)*cos(f*x + e)^2 + a^2 + 2*a*b + b^2)*sqrt(-b*cos(f*x + e)^2 + a + b))/((a^3*b + 3*a^2*b^2 +
3*a*b^3 + b^4)*f*cos(f*x + e)^4 - (a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*f*cos(f*x + e)^2)]

Sympy [F]

\[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\tan ^{3}{\left (e + f x \right )}}{\left (a + b \sin ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tan(f*x+e)**3/(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Integral(tan(e + f*x)**3/(a + b*sin(e + f*x)**2)**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.64 \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {\frac {{\left (2 \, a b^{2} - b^{3}\right )} \log \left (\frac {\sqrt {b \sin \left (f x + e\right )^{2} + a} - \sqrt {a + b}}{\sqrt {b \sin \left (f x + e\right )^{2} + a} + \sqrt {a + b}}\right )}{{\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a + b}} - \frac {2 \, {\left (2 \, a^{2} b^{2} + 2 \, a b^{3} - {\left (2 \, a b^{2} - b^{3}\right )} {\left (b \sin \left (f x + e\right )^{2} + a\right )}\right )}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} {\left (a^{2} + 2 \, a b + b^{2}\right )} - {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \sqrt {b \sin \left (f x + e\right )^{2} + a}}}{4 \, b^{2} f} \]

[In]

integrate(tan(f*x+e)^3/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

1/4*((2*a*b^2 - b^3)*log((sqrt(b*sin(f*x + e)^2 + a) - sqrt(a + b))/(sqrt(b*sin(f*x + e)^2 + a) + sqrt(a + b))
)/((a^2 + 2*a*b + b^2)*sqrt(a + b)) - 2*(2*a^2*b^2 + 2*a*b^3 - (2*a*b^2 - b^3)*(b*sin(f*x + e)^2 + a))/((b*sin
(f*x + e)^2 + a)^(3/2)*(a^2 + 2*a*b + b^2) - (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*sqrt(b*sin(f*x + e)^2 + a)))/(b^2
*f)

Giac [F]

\[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\tan \left (f x + e\right )^{3}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(tan(f*x+e)^3/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^3(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (e+f\,x\right )}^3}{{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

[In]

int(tan(e + f*x)^3/(a + b*sin(e + f*x)^2)^(3/2),x)

[Out]

int(tan(e + f*x)^3/(a + b*sin(e + f*x)^2)^(3/2), x)